государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа № 9 имени кавалера ордена Мужества Д.И.Герасименко «Центр образования» городского округа Октябрьск Самарской области

Рассмотрена Проверена Утверждена на заседании методического объединения учителей Протокол №1 Е.А. Кузьмина от «29» августа 2025г. от «29» августа 2025г. от «25» августа 2025г. Д.О. директора школы от «25» августа 2025г. Д.А. Мельдер

Программа элективного курса «Решение задач по генетике»

Автор : Бочоришвили Т.Н. учитель биологии ГБОУ СОШ №9 «Центр образования» г.о. Октябрьска

Пояснительная записка.

Предлагаемый элективный курс предназначен для обучающихся 10 классов. Элективный курс включает материал по разделу биологии «Основы генетики. Решение генетических задач» и расширяет рамки учебной программы. Важная роль отводится практической направленности данного курса как возможности качественной подготовки к заданиям ЕГЭ из части С. Генетические задачи включены в кодификаторы ЕГЭ по биологии, причем в структуре экзаменационной работы считаются заданиями повышенного уровня сложности.

Курс демонстрирует связь биологии, в первую очередь, с медициной, селекцией. Межпредметный характер курса позволит заинтересовать школьников практической биологией, убедить их в возможности применения теоретических знаний для диагностики и прогнозирования наследственных заболеваний, успешной селекционной работы, повысить их познавательную активность, развить аналитические способности.

Для успешного решения генетических задач обучающиеся должны свободно ориентироваться в основных генетических понятиях и законах, знать специаль- ную терминологию и буквенную символику. Умение решать генетические за- дачи является важным показателем овладения учащимися теоретических знаний по генетике. Генетические задачи не только конкретизируют и углубляют теоре- тические знания обучающихся, но и показывают практическую значимость представлений о механизмах наследования генов и хромосом, изменчивости и формирования признаков. Элективный курс рассчитан на 33 часов учебных занятий: один час в неделю.

Цели элективного курса: осуществление осознанного выбора путей продолжения образования и будущей профессиональной деятельности, вооружение обучающихся знаниями по решению генетических задач, которые необходимы для успешной сдачи экзамена (часть С ЕГЭ); раскрытии роли генетики в познании механизмов наследования генов и хромосом, изменчивости и формирования признаков,

Задачи курса:

- подготовка к осуществлению осознанного выбора индивидуальной профессиональной траектории
- воспитание личностных качеств, обеспечивающих успешность творческой деятельности (активности, увлеченности, наблюдательности,

сообразительности), успешность существования и деятельности в ученическом коллективе; развивать общеучебные умения (умения работать со справочной литературой, сравнивать, выделять главное, обобщать, систематизировать материал, делать выводы), развивать самостоятельность и творчество при решении практических задач;

кти теских зада 1,

• формировать представление о методах и способах решения генетических задач для впраильного их применения при решении задания части С ЕГЭ

Содержание учебного материала

Введение (1 ч). Цели и задачи курса. Актуализация ранее полученных знаний по разделу биологии «Основы генетики».

Тема 1. Общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков (1 ч). Генетика — наука о закономерностях наследственности и изменчивости. Наследственность и изменчивость — свойства организмов. Генетическая терминология и символика. Самовоспроизведение — всеобщее свойство живого. Половое размножение. Мейоз, его биологическое значение. Строение и функции хромосом. ДНК — носитель наследственной информации. Значение постоянства числа и формы хромосом в клетках. Ген. Генетический код.

Демонстрации: модель ДНК и РНК, таблицы «Генетический код», «Мейоз», моделиаппликации, иллюстрирующие законы наследственности, перекрест хромосом; хромосомные аномалии человека и их фенотипические проявления.

Тема 2. Законы Менделя и их цитологические основы (5 ч). История развития генетики. Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное скрещивание. Закон доминирования. Закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание. Закон независимого комбинирования. Фенотип и генотип. Цитологические основы генетических законов наследования.

Практическая работа № 1 «Решение генетических задач на моногибридное скрещивание». **Практическая работа** № 2 «Решение генетических задач на дигибридное скрещивание».

Демонстрации: решетка Пеннета, биологический материал, с которым работал Г.Мендель.

Тема 3. Взаимодействие аллельных и неаллельных генов. Множественный аллелизм. Плейотропия Взаимодействие (6ч). Генотип целостная система. как аллельных (доминирование, доминирование, кодоминирование) неполное неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия. Условия, влияющие на результат взаимодействия между генами.

Практическая работа № 3 «Решение генетических задач на взаимодействие аллельных и неаллельных генов».

Практическая работа № 4 «Определение групп крови человека – пример кодоминирования аллельных генов».

Демонстрации: рисунки, иллюстрирующие взаимодействие аллельных и неаллельных генов

- окраска ягод земляники при неполном доминировании;
- окраска меха у норок при плейотропном действии гена;
- окраска венчика у льна пример комплементарности
- окраска плода у тыквы при эпистатическом взаимодействии двух генов
- окраска колосковой чешуи у овса пример полимерии

Тема 4. Сцепленное наследование признаков и кроссинговер (3 ч). Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т.

Моргана. Полное и неполное сцепление генов. Генетические карты хромосом. Цитологические основы сцепленного наследования генов, кроссинговера.

Практическая работа № 5 «Решение генетических задач на сцепленное наследование признаков».

Демонстрации: модели-аппликации, иллюстрирующие законы наследственности, перекрест хромосом; генетические карты хромосом

Тема 5. Наследование признаков, сцепленных с полом. Пенетрантность (5ч). Генетическое определение пола. Генетическая структура половых хромосом. Гомогаметный и гетерогаметный пол. Наследование признаков, сцепленных с полом. Пенетрантность – способность гена проявляться в фенотипе.

Практическая работа № 6 «Решение генетических задач на сцепленное с полом наследование, на применение понятия - пенетрантность».

Демонстрации: схемы скрещивания на примере классической гемофилии и дальтонизма человека

Тема 6. Генеалогический метод (5 ч). Генеалогический метод — фундаментальный и универсальный метод изучения наследственности и изменчивости человека. Установление генетических закономерностей у человека. Пробанд. Символы родословной.

Практическая работа № 8 «Составление родословной».

Демонстрации: таблица «Символы родословной», рисунки, иллюстрирующие хромосомные аномалии человека и их фенотипические проявления.

Тема 7. Популяционная генетика. Закон Харди-Вейнберга (6 ч). Популяционностатистический метод — основа изучения наследственных болезней в медицинской генетике. Закон Харди-Вейнберга, используемый для анализа генетической структуры популяций.

Практическая работа № 9 «Анализ генетической структуры популяции на основе закона Харди-Вейнберга»

Итоговое занятие. Защита проекта.

- Изучение и прогнозирование наследования конкретного признака в своей семье.
- Изучение проявления признаков у домашних питомцев.

Планируемые результаты

В результате изучения программы элективного курса учащиеся должны Знать:

- общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков; специфические термины и символику, используемые при решении генетических задач
- законы Менделя и их цитологические основы
- виды взаимодействия аллельных и неаллельных генов, их характеристику; виды скрещивания
- сцепленное наследование признаков, кроссинговер
- наследование признаков, сцепленных с полом
- генеалогический метод, или метод анализа родословных, как фундаментальный и универсальный метод изучения наследственности и изменчивости человека
- популяционно-статистический метод основу популяционной генетики (в медицине применяется при изучении наследственных болезней)

Уметь:

- объяснять роль генетики в формировании научного мировоззрения; содержание генетической задачи;
- применять термины по генетике, символику при решении генетических задач;

- решать генетические задачи; составлять схемы скрещивания;
- анализировать и прогнозировать распространенность наследственных заболеваний в последующих поколениях
- описывать виды скрещивания, виды взаимодействия аллельных и неаллельных генов;
- находить информацию о методах анализа родословных в медицинских целях в различных источниках (учебных текстах, справочниках, научно-популярных изданиях, компьютерных базах данных, ресурсах Интернет) и критически ее оценивать;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- профилактики наследственных заболеваний;
- оценки опасного воздействия на организм человека различных загрязнений среды как одного из мутагенных факторов;
- оценки этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение)

Формы контроля: тематическое тестирование, составление схем скрещивания, создание тематических презентаций, составление вопросников, тестов силами обучающихся, формирование тематических справочников, защита проектов.

Формы организации учебной деятельности: лекции с элементами беседы, семинары, практические работы, познавательные игры, дискуссии, дифференцированная групповая работа, проектная деятельность обучающихся.

Темы рефератов и проектных работ:

- Генетика: история и современность.
- Методы изучения наследственности человека.
- Генетическая медицина: шаги в будущее.
- Чем опасны близкородственные браки?

ТЕМАТИЧЕСКИЙ ПЛАН

No	Тема	Количество
п/п		часов
1.	Введение	1
2.	Тема 1. Общие сведения о молекулярных и клеточных	1
	механизмах наследования генов и формирования	
	признаков	
3.	Тема 2. Законы Менделя и их цитологические основы	5
4	Тема 3. Взаимодействие аллельных и неаллельных генов.	6
	Множественный аллелизм. Плейотропия	
5.	Тема 4. Сцепленное наследование признаков и	3
	кроссинговер	
6.	Тема 5. Наследование признаков, сцепленных с полом.	5
	Пенетрантность	
7.	Тема 6. Генеалогический метод	5
8.	Тема 7. Популяционная генетика. Закон Харди-Вейнберга	6
9.	Итоговое занятие	2
	Bcero:	34

Поурочное планирование

Всего уроков - 34 ч

No	Тема урока		
п/п			
1	Введение (1 ч).		
	Тема 1. Общие сведения о молекулярных и клеточных		
	механизмах наследования генов и формирования признаков(1ч)		
2	Общие сведения о молекулярных и клеточных механизмах		
	наследования генов и формирования признаков.		
	Тема 2. Законы Менделя и их цитологические основы(5ч)		
3	Законы Менделя и их цитологические основы		
4	ПР№1 «Решение генетических задач на моногибридное		
	скрещивание».		
5	Решение задач на моногибридное скрещивание с полным и неполным		
	доминированием		
6	ПР№2 «Решение генетических задач на ди - и полигибридное		
	скрещивание».		
7	Решение задач на дигибридное скрещивание с полным и неполным		
	доминированием		
	Тема 3. Взаимодействие аллельных и неаллельных генов.		
	Множественный аллелизм. Плейотропия(6ч)		
8	Взаимодействие аллельных и неаллельных генов.		
9	Множественный аллелизм. Плейотропия		
10	Решение задач на множественный аллелизм + дигибридное		
	скрещивание		
11	ПР № 3 «Решение генетических задач на взаимодействие аллельных и		
	неаллельных генов».		
12	Решение задач на комбинативное взаимодействие и гибель		
	эмбрионов		
13	ПР№4 «Определение групп крови человека – пример		
	кодоминирования аллельных генов».		
1.4	Тема 4. Сцепленное наследование признаков и кроссинговер(3ч)		
14	Сцепленное наследование признаков и кроссинговер		
15	ПР№5 «Решение генетических задач на сцепленное наследование		
1.0	признаков».		
16	Решение задач на неполное и полное сцепление		
	Тема 5. Наследование признаков, сцепленных с полом.		
17	Пенетрантность(5ч)		
17	Наследование признаков, сцепленных с полом. Пенетрантность.		
18	Решение задач на сцепление обоих генов с полом на сцепление с		

	полом+кодоминирование	
19	Решение задач на сцепление с полом: женская гетерогаметность,	
	голандрический тип	
20	Решение задач на псевдоаутосомные признаки	
21	ПР№6 «Решение генетических задач на сцепленное с полом	
	наследование; на применение пенетрантности».	
	Тема 6. Генеалогический метод(5ч)	
22	Генеалогический метод – фундаментальный и универсальный метод	
	изучения наследственности и изменчивости человека.	
23	Решение задач по составлению родословных с аутосомно-	
	доминантным и аутосомно рецессивным типом наследования	
24	Решение задач по составлению родословных с доминантным и	
	рецессивным сцепленным с X хромосомой типом наследования и	
	сцепленным с У-хромосомой	
25	Решение задач на анализ родословных и определение пипа	
	наследования	
26	ПР№ 7 «Составление родословной».	
	Тема 7. Популяционная генетика. Закон Харди-Вейнберга(6ч)	
27	Популяционная генетика. Закон Харди-Вейнберга.	
28	ПР№8 «Анализ генетической структуры популяции на основе закона	
	Харди-Вейнберга». Решение задач по нахождению частот аллелей и	
	частот всех возможных генотипов, процента носителей генов	
29	Решение задач на определение: находится ли популяция в равновесии	
	Харди-Вайнберга и количества поколений через которое наступит	
	равновесное состояние	
30	Факторы, влияющие на генетическую структуру отдельных	
	популяций человека	
31	Генофонд и генетический груз отдельных популяций.	
32	Решение задач на определение: генетической структуры популяции	
33	Итоговое занятие.	

Список литературы:

- Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы: Учебное пособие 2-е изд.. М: Физматлит, 2006. С. 320. ISBN 5- 9221-0510-8.
- Жалилова В. А. Педагогика: традиции и инновации: материалыVI междунар. науч. конф.— Челябинск: «Два комсомольца», 2015
- Захаров В.Б. Общая биология: Учебник для 10-11 классов общеобразовательных учебных заведений. М.: Дрофа, 2012. 624с.
- Киреева Н.М. Биология для поступающих в ВУЗы. Способы решения задач по генетике. Волгоград: Учитель, 2003. 50с.
- Муртазин Г.М. Задачи и упражнения по общей биологии. Пособие для учителей. М.: Просвещение, 1981. 192с.
- Петросова Р.А. Основы генетики. Темы школьного курса. М.: Дрофа, 2004. 96с.
- Петунин О.В. Элективные курсы. Их место и роль в биологическом образовании.// —Биология в школе∥. 2004. №7.
- Фросин В.Н.Учебные задачи по генетике Казань, издательство

«Магариф», 1995